First commit

This commit is contained in:
Andrea Bontempi 2019-04-04 15:26:31 +02:00
commit aed9381e0a
5 changed files with 755 additions and 0 deletions

16
CMakeLists.txt Normal file
View File

@ -0,0 +1,16 @@
cmake_minimum_required(VERSION 2.6)
project(quaternion)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++17")
find_package(Boost COMPONENTS unit_test_framework system REQUIRED)
include_directories (${Boost_INCLUDE_DIRS})
add_executable(quaternion_example example.cpp Quaternion.h)
add_executable(quaternion_test test.cpp Quaternion.h)
target_link_libraries(quaternion_test ${Boost_LIBRARIES})
add_test(NAME quaternion_test WORKING_DIRECTORY ${PROJECT_BINARY_DIR} COMMAND ${PROJECT_BINARY_DIR}/quaternion_test)
enable_testing()

384
Quaternion.h Normal file
View File

@ -0,0 +1,384 @@
/*
* Copyright © 2019 Andrea Bontempi All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* - Neither the name of Andrea Bontempi nor the names of its contributors may be used to
* endorse or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS AS IS AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef QUATER_H
#define QUATER_H
#include <cmath>
#include <type_traits>
#include <complex>
template<typename T = double>
class Quaternion {
private:
T n, ni, nj, nk;
public:
using value_type = T; ///< value_type trait for STL compatibility
/**
* Default constuctor
*/
Quaternion(const T& n = static_cast<T>(0), const T& ni = static_cast<T>(0), const T& nj = static_cast<T>(0), const T& nk = static_cast<T>(0))
: n(n), ni(ni), nj(nj), nk(nk) {}
/**
* Specialized constructor for std::complex
*/
Quaternion(const std::complex<T>& complex_a, const std::complex<T>& complex_b = std::complex<T>(static_cast<T>(0), static_cast<T>(0)))
: n(complex_a.real()), ni(complex_a.imag()), nj(complex_b.real()), nk(complex_b.imag()) {}
/**
* Copy constructor
*/
template<typename U>
Quaternion(const Quaternion<U>& rhs)
: n(rhs.a()), ni(rhs.b()), nj(rhs.c()), nk(rhs.d()) {}
/**
* Default copy assignment operator
*/
template<typename U>
Quaternion<T>& operator=(const Quaternion<U>& rhs) {
this->n = rhs.a();
this->ni = rhs.b();
this->nj = rhs.c();
this->nk = rhs.d();
}
/**
* Specialized copy assignment operator for std::complex
*/
template<typename U>
Quaternion<T>& operator=(const std::complex<U> rhs) {
this->n = rhs.real();
this->ni = rhs.imag();
this->nj = static_cast<T>(0);
this->nk = static_cast<T>(0);
}
T a() const {
return this->n;
}
T b() const {
return this->ni;
}
T c() const {
return this->nj;
}
T d() const {
return this->nk;
}
std::complex<T> complex_a() const {
return {this->n, this->ni};
}
std::complex<T> complex_b() const {
return {this->nj, this->nk};
}
T real() const {
return this->n;
}
Quaternion<T> unreal() const {
return {static_cast<T>(0), this->ni, this->nj, this->nk};
}
};
namespace std {
/**
* Norm of quaternion
*/
template<typename T>
T norm(const Quaternion<T>& quat) {
return (quat.a() * quat.a()) + (quat.b() * quat.b()) + (quat.c() * quat.c()) + (quat.d() * quat.d());
}
/**
* Implementation of abs with float sqrt
*/
float abs(const Quaternion<float>& quat) {
return std::sqrt(std::norm(quat));
}
/**
* Implementation of abs with double sqrt
*/
double abs(const Quaternion<double>& quat) {
return std::sqrt(std::norm(quat));
}
/**
* Implementation of abs with long double sqrt
*/
long double abs(const Quaternion<long double>& quat) {
return std::sqrt(std::norm(quat));
}
/**
* The conjugate of quaternion
*/
template<typename T>
Quaternion<T> conj(const Quaternion<T>& quat) {
return {quat.a(), quat.b() * -1, quat.c() * -1, quat.d() * -1};
}
/**
* Is not a number?
*/
template<typename T>
bool isnan(Quaternion<T> quat) {
return std::isnan(quat.a()) || std::isnan(quat.b()) || std::isnan(quat.c()) || std::isnan(quat.d());
}
/**
* Is infinite?
*/
template<typename T>
bool isinf(Quaternion<T> quat) {
return std::isinf(quat.a()) || std::isinf(quat.b()) || std::isinf(quat.c()) || std::isinf(quat.d());
}
/**
* Is finite?
*/
template<typename T>
bool isfinite(Quaternion<T> quat) {
return std::isfinite(quat.a()) && std::isfinite(quat.b()) && std::isfinite(quat.c()) && std::isfinite(quat.d());
}
}
/**
* Add operator between two quaternios.
*/
template<typename _tA, typename _tB>
auto operator+(const Quaternion<_tA>& lhs, const Quaternion<_tB>& rhs) -> Quaternion<decltype(lhs.a() + rhs.a())> {
return {lhs.a() + rhs.a(), lhs.b() + rhs.b(), lhs.c() + rhs.c(), lhs.d() + rhs.d()};
}
/**
* Add operator between quaternion and std::complex.
*/
template<typename _tA, typename _tB>
auto operator+(const Quaternion<_tA>& lhs, const std::complex<_tB>& rhs) -> Quaternion<decltype(lhs.a() + rhs.real())> {
return {lhs.a() + rhs.real(), lhs.b() + rhs.imag(), lhs.c(), lhs.d()};
}
/**
* Add operator between std::complex and quaternion.
*/
template<typename _tA, typename _tB>
auto operator+(const std::complex<_tB>& lhs, const Quaternion<_tA>& rhs) -> Quaternion<decltype(lhs.real() + rhs.a())> {
return operator+(rhs, lhs);
}
/**
* Add operator between quaternion and scalar.
*/
template<typename _tA, typename _tB>
auto operator+(const Quaternion<_tA>& lhs, const _tB& rhs) -> Quaternion<decltype(lhs.a() + rhs)> {
return {lhs.a() + rhs, lhs.b(), lhs.c(), lhs.d()};
}
/**
* Add operator between scalar and quaternion.
*/
template<typename _tA, typename _tB>
auto operator+(const _tA& lhs, const Quaternion<_tB>& rhs) -> Quaternion<decltype(lhs + rhs.a())> {
return operator+(rhs, lhs);
}
/**
* Sub operator between two quaternions.
*/
template<typename _tA, typename _tB>
auto operator-(const Quaternion<_tA>& lhs, const Quaternion<_tB>& rhs) -> Quaternion<decltype(lhs.a() - rhs.a())> {
return {lhs.a() - rhs.a(), lhs.b() - rhs.b(), lhs.c() - rhs.c(), lhs.d() - rhs.d()};
}
/**
* Sub operator between quaternion and std:complex.
*/
template<typename _tA, typename _tB>
auto operator-(const Quaternion<_tA>& lhs, const std::complex<_tB>& rhs) -> Quaternion<decltype(lhs.a() - rhs.real())> {
return {lhs.a() - rhs.real(), lhs.b() - rhs.imag(), lhs.c(), lhs.d()};
}
/**
* Sub operator between std:complex and quaternion.
*/
template<typename _tA, typename _tB>
auto operator-(const std::complex<_tB>& lhs, const Quaternion<_tA>& rhs) -> Quaternion<decltype(lhs.real() - rhs.a())> {
return {lhs.real() - rhs.a(), lhs.imag() - rhs.b(), -rhs.c(), -rhs.d()};
}
/**
* Sub operator between quaternion and scalar.
*/
template<typename _tA, typename _tB>
auto operator-(const Quaternion<_tA>& lhs, const _tB& rhs) -> Quaternion<decltype(lhs.a() - rhs)> {
return {lhs.a() - rhs, lhs.b(), lhs.c(), lhs.d()};
}
/**
* Sub operator between scalar and quaternion.
*/
template<typename _tA, typename _tB>
auto operator-(const _tA& lhs, const Quaternion<_tB>& rhs) -> Quaternion<decltype(lhs - rhs.a())> {
return {lhs - rhs.a(), -rhs.b(), -rhs.c(), -rhs.d()};
}
/**
* Mul operator between two quaternions.
*/
template<typename _tA, typename _tB>
auto operator*(const Quaternion<_tA>& lhs, const Quaternion<_tB>& rhs) -> Quaternion<decltype(lhs.a() * rhs.a())> {
decltype(lhs.a() * rhs.a()) tn = (lhs.a() * rhs.a()) - (lhs.b() * rhs.b()) - (lhs.c() * rhs.c()) - (lhs.d() * rhs.d());
decltype(lhs.a() * rhs.a()) tni = (lhs.a() * rhs.b()) + (lhs.b() * rhs.a()) + (lhs.c() * rhs.d()) - (lhs.d() * rhs.c());
decltype(lhs.a() * rhs.a()) tnj = (lhs.a() * rhs.c()) + (lhs.c() * rhs.a()) + (lhs.d() * rhs.b()) - (lhs.b() * rhs.d());
decltype(lhs.a() * rhs.a()) tnk = (lhs.a() * rhs.d()) + (lhs.d() * rhs.a()) + (lhs.b() * rhs.c()) - (lhs.c() * rhs.b());
return {tn, tni, tnj, tnk};
}
/**
* Mul operator between quaternion and std:complex.
*/
template<typename _tA, typename _tB>
auto operator*(const Quaternion<_tA>& lhs, const std::complex<_tB>& rhs) -> Quaternion<decltype(lhs.a() * rhs.real())> {
decltype(lhs.a() * rhs.real()) tn = (lhs.a() * rhs.real()) - (lhs.b() * rhs.imag());
decltype(lhs.a() * rhs.real()) tni = (lhs.a() * rhs.imag()) + (lhs.b() * rhs.real());
decltype(lhs.a() * rhs.real()) tnj = (lhs.c() * rhs.real()) + (lhs.d() * rhs.imag());
decltype(lhs.a() * rhs.real()) tnk = (lhs.d() * rhs.real()) - (lhs.c() * rhs.imag());
return {tn, tni, tnj, tnk};
}
/**
* Mul operator between std:complex and quaternion.
*/
template<typename _tA, typename _tB>
auto operator*(const std::complex<_tB>& lhs, const Quaternion<_tA>& rhs) -> Quaternion<decltype(lhs.real() * rhs.a())> {
decltype(lhs.real() * rhs.a()) tn = (lhs.real() * rhs.a()) - (lhs.imag() * rhs.b());
decltype(lhs.real() * rhs.a()) tni = (lhs.real() * rhs.b()) + (lhs.imag() * rhs.a());
decltype(lhs.real() * rhs.a()) tnj = (lhs.real() * rhs.c()) - (lhs.imag() * rhs.d());
decltype(lhs.real() * rhs.a()) tnk = (lhs.real() * rhs.d()) + (lhs.imag() * rhs.c());
return {tn, tni, tnj, tnk};
}
/**
* Mul operator between quaternion and scalar.
*/
template<typename _tA, typename _tB>
auto operator*(const Quaternion<_tA>& lhs, const _tB& rhs) -> Quaternion<decltype(lhs.a() * rhs)> {
return {lhs.a() * rhs, lhs.b() * rhs, lhs.c() * rhs, lhs.d() * rhs};
}
/**
* Mul operator between scalar and quaternion.
*/
template<typename _tA, typename _tB>
auto operator*(const _tA& lhs, const Quaternion<_tB>& rhs) -> Quaternion<decltype(lhs * rhs.a())> {
return operator*(rhs, lhs);
}
/**
* Div operator between two quaternions.
*/
template<typename _tA, typename _tB>
auto operator/(const Quaternion<_tA>& lhs, const Quaternion<_tB>& rhs) -> Quaternion<decltype((lhs.a() * rhs.a()) / rhs.a())> {
decltype(lhs.a() * rhs.a()) tn = (lhs.a() * rhs.a()) + (lhs.b() * rhs.b()) + (lhs.c() * rhs.c()) + (lhs.d() * rhs.d());
decltype(lhs.a() * rhs.a()) tni = - (lhs.a() * rhs.b()) + (lhs.b() * rhs.a()) - (lhs.c() * rhs.d()) + (lhs.d() * rhs.c());
decltype(lhs.a() * rhs.a()) tnj = - (lhs.a() * rhs.c()) + (lhs.c() * rhs.a()) - (lhs.d() * rhs.b()) + (lhs.b() * rhs.d());
decltype(lhs.a() * rhs.a()) tnk = - (lhs.a() * rhs.d()) + (lhs.d() * rhs.a()) - (lhs.b() * rhs.c()) + (lhs.c() * rhs.b());
decltype(rhs.a()) norm = std::norm(rhs);
return {tn / norm, tni / norm, tnj / norm, tnk / norm};
}
/**
* Div operator between quaternion and scalar.
*/
template<typename _tA, typename _tB>
auto operator/(const Quaternion<_tA>& lhs, const _tB& rhs) -> Quaternion<decltype(lhs.a() / rhs)> {
return {lhs.a() / rhs, lhs.b() / rhs, lhs.c() / rhs, lhs.d() / rhs};
}
/**
* Div operator between scalar and quaternion.
*/
template<typename _tA, typename _tB>
auto operator/(const _tB& lhs, const Quaternion<_tA>& rhs) -> Quaternion<decltype((rhs.a() * lhs) / rhs.a())> {
decltype(rhs.a()) norm = std::norm(rhs);
return {(rhs.a() * lhs) / norm, -(rhs.b() * lhs) / norm, -(rhs.c() * lhs) / norm, -(rhs.d() * lhs) / norm};
}
/**
* Trivial comparison operator between quaternions.
*/
template<typename _tA, typename _tB>
bool operator==(const _tA& lhs, const _tB& rhs) {
return lhs.a() == rhs.a() && lhs.b() == rhs.b() && lhs.c() == rhs.c() && lhs.d() == rhs.d();
}
/**
* Stream operator for quaternion.
*/
template<typename T>
std::ostream& operator<< (std::ostream& os, const Quaternion<T>& obj) {
os << "(" << obj.a() << "," << obj.b() << "," << obj.c() << "," << obj.d() << ")";
return os;
}
/**
* Normalization function
*/
template<typename T>
auto normalized(const Quaternion<T>& quat) -> Quaternion<decltype(quat.a() / std::abs(quat))> {
return quat / std::abs(quat);
}
/**
* Inverse function
*/
template<typename T>
auto inverse(const Quaternion<T>& quat) {
return std::conj(quat) / std::norm(quat);
}
#endif // QUATER_H

18
README.md Normal file
View File

@ -0,0 +1,18 @@
A simple header-only generic C++ quaternion class.
==========================================
* Header-only.
* No dynamic memory allocation.
* Supports operations on mixed types.
* Modern C++.
* Compatible with Standard Template Library.
### Run test suite
```
mkdir build
cd build
cmake ..
make
make test
```

91
example.cpp Normal file
View File

@ -0,0 +1,91 @@
/*
* Copyright © 2019 Andrea Bontempi All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* - Neither the name of Andrea Bontempi nor the names of its contributors may be used to
* endorse or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS AS IS AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <iostream>
#include "Quaternion.h"
int main(int argc, char **argv) {
Quaternion<int> a(1,0,1,0);
Quaternion<double> b(1,0.5,0.5,0.75);
Quaternion<float> c(3,0.5,1.5,0.75);
std::complex<double> ca(1,2);
std::complex<double> cb(3,4);
std::cout << "Real part of " << a << " is " << a.real() << std::endl;
std::cout << "Unreal part of " << b << " is " << b.unreal() << std::endl;
std::cout << "Component of " << a << " is " << a.a() << ", " << a.b() << ", " << a.c() << ", " << a.d() << std::endl;
std::cout << "Norm of " << a << " is " << std::norm(a) << std::endl;
std::cout << "Modulus of " << c << " is " << std::abs(c) << std::endl;
std::cout << "Conjugate of " << b << " is " << std::conj(b) << std::endl;
std::cout << "Normalization of " << b << " is " << normalized(b) << std::endl;
std::cout << "Inverse of " << b << " is " << inverse(b) << std::endl;
std::cout << a << " + " << b << " = " << a + b << std::endl;
std::cout << a << " + " << 3 << " = " << a + 3 << std::endl;
std::cout << b << " + complex " << ca << " = " << b + ca << std::endl;
std::cout << a << " - " << b << " = " << a - b << std::endl;
std::cout << a << " * " << b << " = " << a * b << std::endl;
std::cout << a << " * " << 2.2 << " = " << a * 2.2 << std::endl;
std::cout << a << " / " << b << " = " << a / b << std::endl;
std::cout << a << " / " << 2.2 << " = " << a / 2.2 << std::endl;
std::cout << 2.2 << " / " << b << " = " << 2.2 / b << std::endl;
Quaternion<double> component (ca,cb);
std::cout << "Construct quaternion from complex " << ca << " and " << cb << " = " << component << std::endl;
std::cout << "Quaternion " << component << " has complex component " << component.complex_a() << " and " << component.complex_b() << std::endl;
std::cout << a << " is NaN? " << std::boolalpha << std::isnan(a) << std::endl;
std::cout << a << " is infinite? " << std::boolalpha << std::isinf(a) << std::endl;
std::cout << a << " is finite? " << std::boolalpha << std::isfinite(a) << std::endl;
return 0;
}

246
test.cpp Normal file
View File

@ -0,0 +1,246 @@
/*
* Copyright © 2019 Andrea Bontempi All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* - Neither the name of Andrea Bontempi nor the names of its contributors may be used to
* endorse or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS AS IS AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#define BOOST_TEST_DYN_LINK
#define BOOST_TEST_MODULE "Quaternion tests"
#include <complex>
#include "Quaternion.h"
#include <boost/test/unit_test.hpp> //VERY IMPORTANT - include this last
/**
* Comparison operator for test
*/
const double epsilon = 1e-05;
bool operator==(const Quaternion<double>& lhs, const Quaternion<double>& rhs) {
bool check_a = std::abs(lhs.a() - rhs.a()) <= ((std::abs(lhs.a()) < std::abs(rhs.a()) ? std::abs(rhs.a()) : std::abs(lhs.a())) * epsilon);
bool check_b = std::abs(lhs.b() - rhs.b()) <= ((std::abs(lhs.b()) < std::abs(rhs.b()) ? std::abs(rhs.b()) : std::abs(lhs.b())) * epsilon);
bool check_c = std::abs(lhs.c() - rhs.c()) <= ((std::abs(lhs.c()) < std::abs(rhs.c()) ? std::abs(rhs.c()) : std::abs(lhs.c())) * epsilon);
bool check_d = std::abs(lhs.d() - rhs.d()) <= ((std::abs(lhs.d()) < std::abs(rhs.d()) ? std::abs(rhs.d()) : std::abs(lhs.d())) * epsilon);
return check_a && check_b && check_c && check_d;
}
bool compare_double(const double& a, const double& b) {
return std::abs(a - b) <= ((std::abs(a) < std::abs(b) ? std::abs(b) : std::abs(a)) * epsilon);
}
/** CONSTRUCTION OF A QUATERNION **/
BOOST_AUTO_TEST_CASE(quaternion_costruction_from_components) {
Quaternion<double> test(0.1,0.5,0.9,1);
BOOST_CHECK_EQUAL(test.a(), 0.1);
BOOST_CHECK_EQUAL(test.b(), 0.5);
BOOST_CHECK_EQUAL(test.c(), 0.9);
BOOST_CHECK_EQUAL(test.d(), 1);
}
BOOST_AUTO_TEST_CASE(quaternion_costruction_from_complex) {
std::complex<double> a(0.1,0.5);
std::complex<double> b(0.9,1);
Quaternion<double> test(a,b);
BOOST_CHECK_EQUAL(test.complex_a(), a);
BOOST_CHECK_EQUAL(test.complex_b(), b);
}
BOOST_AUTO_TEST_CASE(quaternion_costruction_from_copy) {
Quaternion<double> a(0.1,0.5,0.9,1);
Quaternion<double> b(a);
BOOST_CHECK_EQUAL(a, b);
}
/** UNARY OPERATORS **/
BOOST_AUTO_TEST_CASE(quaternion_conjugation) {
Quaternion<double> a(0.1,0.5,0.9,1);
Quaternion<double> b(0.1,-0.5,-0.9,-1);
BOOST_CHECK_EQUAL(std::conj(a), b);
}
BOOST_AUTO_TEST_CASE(quaternion_norm) {
Quaternion<double> a(0.1,0.5,0.9,1);
double b = 2.07000;
BOOST_CHECK_EQUAL(compare_double(std::norm(a), b), true);
}
BOOST_AUTO_TEST_CASE(quaternion_abs) {
Quaternion<double> a(0.1,0.5,0.9,1);
double b = 1.43875;
BOOST_CHECK_EQUAL(compare_double(std::abs(a), b), true);
}
BOOST_AUTO_TEST_CASE(quaternion_normalization) {
Quaternion<double> a(0.1,0.5,0.9,1);
Quaternion<double> b(0.0695048,0.347524,0.625543,0.695048);
BOOST_CHECK_EQUAL(normalized(a), b);
}
BOOST_AUTO_TEST_CASE(quaternion_inversion) {
Quaternion<double> a(0.1,0.5,0.9,1);
Quaternion<double> b(0.0483092,-0.241546,-0.434783,-0.483092);
BOOST_CHECK_EQUAL(inverse(a), b);
}
/** BINARY OPERATOR: SUM **/
BOOST_AUTO_TEST_CASE(sum_between_quaternions) {
Quaternion<double> a(0.1,0.5,0.9,1);
Quaternion<double> b(0.9,0.5,0.1,0);
Quaternion<double> c(1,1,1,1);
BOOST_CHECK_EQUAL(a + b, c);
}
BOOST_AUTO_TEST_CASE(sum_between_scalar_and_quaternion) {
double a = 1;
Quaternion<double> b(0.9,0.5,0.1,0);
Quaternion<double> c(1.9,0.5,0.1,0);
BOOST_CHECK_EQUAL(a + b, c);
}
BOOST_AUTO_TEST_CASE(sum_between_quaternion_and_scalar) {
Quaternion<double> a(0.9,0.5,0.1,0);
double b = 1;
Quaternion<double> c(1.9,0.5,0.1,0);
BOOST_CHECK_EQUAL(a + b, c);
}
BOOST_AUTO_TEST_CASE(sum_between_complex_and_quaternion) {
std::complex<double> a (1,1);
Quaternion<double> b(0.9,0.5,0.1,0);
Quaternion<double> c(1.9,1.5,0.1,0);
BOOST_CHECK_EQUAL(a + b, c);
}
BOOST_AUTO_TEST_CASE(sum_between_quaternion_and_complex) {
Quaternion<double> a(0.9,0.5,0.1,0);
std::complex<double> b (1,1);
Quaternion<double> c(1.9,1.5,0.1,0);
BOOST_CHECK_EQUAL(a + b, c);
}
/** BINARY OPERATOR: DIFFERENCE **/
BOOST_AUTO_TEST_CASE(difference_between_quaternions) {
Quaternion<double> a(1,1,1,1);
Quaternion<double> b(0.1,0.5,0.9,1);
Quaternion<double> c(0.9,0.5,0.1,0);
BOOST_CHECK_EQUAL(a - b, c);
}
BOOST_AUTO_TEST_CASE(difference_between_scalar_and_quaternion) {
double a = 1;
Quaternion<double> b(0.9,0.5,0.1,0);
Quaternion<double> c(0.1,-0.5,-0.1,0);
BOOST_CHECK_EQUAL(a - b, c);
}
BOOST_AUTO_TEST_CASE(difference_between_quaternion_and_scalar) {
Quaternion<double> a(0.9,0.5,0.1,0);
double b = 1;
Quaternion<double> c(-0.1,0.5,0.1,0);
BOOST_CHECK_EQUAL(a - b, c);
}
BOOST_AUTO_TEST_CASE(difference_between_complex_and_quaternion) {
std::complex<double> a (1,1);
Quaternion<double> b(0.9,0.5,0.1,0);
Quaternion<double> c(0.1,0.5,-0.1,0);
BOOST_CHECK_EQUAL(a - b, c);
}
BOOST_AUTO_TEST_CASE(difference_between_quaternion_and_complex) {
Quaternion<double> a(0.9,0.5,0.1,0);
std::complex<double> b (1,1);
Quaternion<double> c(-0.1,-0.5,0.1,0);
BOOST_CHECK_EQUAL(a - b, c);
}
/** BINARY OPERATOR: MULTIPLICATION **/
BOOST_AUTO_TEST_CASE(multiplication_between_quaternions) {
Quaternion<double> a(-1,1,-1,1);
Quaternion<double> b(0.1,0.5,0.9,1);
Quaternion<double> c(-0.7,-2.3,-1.5,0.5);
BOOST_CHECK_EQUAL(a * b, c);
}
BOOST_AUTO_TEST_CASE(multiplication_between_scalar_and_quaternion) {
double a = 2;
Quaternion<double> b(0.1,0.5,0.9,1);
Quaternion<double> c(0.2,1,1.8,2);
BOOST_CHECK_EQUAL(a * b, c);
}
BOOST_AUTO_TEST_CASE(multiplication_between_quaternion_and_scalar) {
Quaternion<double> a(0.1,0.5,0.9,1);
double b = 2;
Quaternion<double> c(0.2,1,1.8,2);
BOOST_CHECK_EQUAL(a * b, c);
}
BOOST_AUTO_TEST_CASE(multiplication_between_complex_and_quaternion) {
std::complex<double> a (1,1);
Quaternion<double> b(0.1,0.5,0.9,1);
Quaternion<double> c(-0.4,0.6,-0.1,1.9);
BOOST_CHECK_EQUAL(a * b, c);
}
BOOST_AUTO_TEST_CASE(multiplication_between_quaternion_and_complex) {
Quaternion<double> a(0.1,0.5,0.9,1);
std::complex<double> b (1,1);
Quaternion<double> c(-0.4,0.6,1.9,0.1);
BOOST_CHECK_EQUAL(a * b, c);
}
/** BINARY OPERATOR: DIVISION **/
BOOST_AUTO_TEST_CASE(division_between_quaternions) {
Quaternion<double> a(-1,1,-1,1);
Quaternion<double> b(0.1,0.5,0.9,1);
Quaternion<double> c(0.241546,1.207729,0.628019,-0.144928);
BOOST_CHECK_EQUAL(a / b, c);
}
BOOST_AUTO_TEST_CASE(division_between_scalar_and_quaternion) {
double a = 2;
Quaternion<double> b(0.1,0.5,0.9,1);
Quaternion<double> c(0.0966184,-0.483092,-0.869565,-0.966184);
BOOST_CHECK_EQUAL(a / b, c);
}
BOOST_AUTO_TEST_CASE(division_between_quaternion_and_scalar) {
Quaternion<double> a(-1,1,-1,1);
double b = 2;
Quaternion<double> c(-0.5,0.5,-0.5,0.5);
BOOST_CHECK_EQUAL(a / b, c);
}