mirror of
https://github.com/Andreabont/simple-template-quaternion.git
synced 2024-11-09 17:31:46 +00:00
247 lines
8.1 KiB
C++
247 lines
8.1 KiB
C++
/*
|
|
* Copyright © 2019 Andrea Bontempi All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above copyright notice, this
|
|
* list of conditions and the following disclaimer in the documentation and/or
|
|
* other materials provided with the distribution.
|
|
*
|
|
* - Neither the name of Andrea Bontempi nor the names of its contributors may be used to
|
|
* endorse or promote products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#define BOOST_TEST_DYN_LINK
|
|
#define BOOST_TEST_MODULE "Quaternion tests"
|
|
|
|
#include <complex>
|
|
#include "Quaternion.h"
|
|
#include <boost/test/unit_test.hpp> //VERY IMPORTANT - include this last
|
|
|
|
|
|
/**
|
|
* Comparison operator for test
|
|
*/
|
|
|
|
const double epsilon = 1e-05;
|
|
|
|
bool operator==(const Quaternion<double>& lhs, const Quaternion<double>& rhs) {
|
|
bool check_a = std::abs(lhs.a() - rhs.a()) <= ((std::abs(lhs.a()) < std::abs(rhs.a()) ? std::abs(rhs.a()) : std::abs(lhs.a())) * epsilon);
|
|
bool check_b = std::abs(lhs.b() - rhs.b()) <= ((std::abs(lhs.b()) < std::abs(rhs.b()) ? std::abs(rhs.b()) : std::abs(lhs.b())) * epsilon);
|
|
bool check_c = std::abs(lhs.c() - rhs.c()) <= ((std::abs(lhs.c()) < std::abs(rhs.c()) ? std::abs(rhs.c()) : std::abs(lhs.c())) * epsilon);
|
|
bool check_d = std::abs(lhs.d() - rhs.d()) <= ((std::abs(lhs.d()) < std::abs(rhs.d()) ? std::abs(rhs.d()) : std::abs(lhs.d())) * epsilon);
|
|
return check_a && check_b && check_c && check_d;
|
|
}
|
|
|
|
bool compare_double(const double& a, const double& b) {
|
|
return std::abs(a - b) <= ((std::abs(a) < std::abs(b) ? std::abs(b) : std::abs(a)) * epsilon);
|
|
|
|
}
|
|
|
|
/** CONSTRUCTION OF A QUATERNION **/
|
|
|
|
BOOST_AUTO_TEST_CASE(quaternion_costruction_from_components) {
|
|
Quaternion<double> test(0.1,0.5,0.9,1);
|
|
BOOST_CHECK_EQUAL(test.a(), 0.1);
|
|
BOOST_CHECK_EQUAL(test.b(), 0.5);
|
|
BOOST_CHECK_EQUAL(test.c(), 0.9);
|
|
BOOST_CHECK_EQUAL(test.d(), 1);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(quaternion_costruction_from_complex) {
|
|
std::complex<double> a(0.1,0.5);
|
|
std::complex<double> b(0.9,1);
|
|
Quaternion<double> test(a,b);
|
|
BOOST_CHECK_EQUAL(test.complex_a(), a);
|
|
BOOST_CHECK_EQUAL(test.complex_b(), b);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(quaternion_costruction_from_copy) {
|
|
Quaternion<double> a(0.1,0.5,0.9,1);
|
|
Quaternion<double> b(a);
|
|
BOOST_CHECK_EQUAL(a, b);
|
|
}
|
|
|
|
/** UNARY OPERATORS **/
|
|
|
|
BOOST_AUTO_TEST_CASE(quaternion_conjugation) {
|
|
Quaternion<double> a(0.1,0.5,0.9,1);
|
|
Quaternion<double> b(0.1,-0.5,-0.9,-1);
|
|
BOOST_CHECK_EQUAL(std::conj(a), b);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(quaternion_norm) {
|
|
Quaternion<double> a(0.1,0.5,0.9,1);
|
|
double b = 2.07000;
|
|
BOOST_CHECK_EQUAL(compare_double(std::norm(a), b), true);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(quaternion_abs) {
|
|
Quaternion<double> a(0.1,0.5,0.9,1);
|
|
double b = 1.43875;
|
|
BOOST_CHECK_EQUAL(compare_double(std::abs(a), b), true);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(quaternion_normalization) {
|
|
Quaternion<double> a(0.1,0.5,0.9,1);
|
|
Quaternion<double> b(0.0695048,0.347524,0.625543,0.695048);
|
|
BOOST_CHECK_EQUAL(normalized(a), b);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(quaternion_inversion) {
|
|
Quaternion<double> a(0.1,0.5,0.9,1);
|
|
Quaternion<double> b(0.0483092,-0.241546,-0.434783,-0.483092);
|
|
BOOST_CHECK_EQUAL(inverse(a), b);
|
|
}
|
|
|
|
/** BINARY OPERATOR: SUM **/
|
|
|
|
BOOST_AUTO_TEST_CASE(sum_between_quaternions) {
|
|
Quaternion<double> a(0.1,0.5,0.9,1);
|
|
Quaternion<double> b(0.9,0.5,0.1,0);
|
|
Quaternion<double> c(1,1,1,1);
|
|
BOOST_CHECK_EQUAL(a + b, c);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(sum_between_scalar_and_quaternion) {
|
|
double a = 1;
|
|
Quaternion<double> b(0.9,0.5,0.1,0);
|
|
Quaternion<double> c(1.9,0.5,0.1,0);
|
|
BOOST_CHECK_EQUAL(a + b, c);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(sum_between_quaternion_and_scalar) {
|
|
Quaternion<double> a(0.9,0.5,0.1,0);
|
|
double b = 1;
|
|
Quaternion<double> c(1.9,0.5,0.1,0);
|
|
BOOST_CHECK_EQUAL(a + b, c);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(sum_between_complex_and_quaternion) {
|
|
std::complex<double> a (1,1);
|
|
Quaternion<double> b(0.9,0.5,0.1,0);
|
|
Quaternion<double> c(1.9,1.5,0.1,0);
|
|
BOOST_CHECK_EQUAL(a + b, c);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(sum_between_quaternion_and_complex) {
|
|
Quaternion<double> a(0.9,0.5,0.1,0);
|
|
std::complex<double> b (1,1);
|
|
Quaternion<double> c(1.9,1.5,0.1,0);
|
|
BOOST_CHECK_EQUAL(a + b, c);
|
|
}
|
|
|
|
/** BINARY OPERATOR: DIFFERENCE **/
|
|
|
|
BOOST_AUTO_TEST_CASE(difference_between_quaternions) {
|
|
Quaternion<double> a(1,1,1,1);
|
|
Quaternion<double> b(0.1,0.5,0.9,1);
|
|
Quaternion<double> c(0.9,0.5,0.1,0);
|
|
BOOST_CHECK_EQUAL(a - b, c);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(difference_between_scalar_and_quaternion) {
|
|
double a = 1;
|
|
Quaternion<double> b(0.9,0.5,0.1,0);
|
|
Quaternion<double> c(0.1,-0.5,-0.1,0);
|
|
BOOST_CHECK_EQUAL(a - b, c);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(difference_between_quaternion_and_scalar) {
|
|
Quaternion<double> a(0.9,0.5,0.1,0);
|
|
double b = 1;
|
|
Quaternion<double> c(-0.1,0.5,0.1,0);
|
|
BOOST_CHECK_EQUAL(a - b, c);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(difference_between_complex_and_quaternion) {
|
|
std::complex<double> a (1,1);
|
|
Quaternion<double> b(0.9,0.5,0.1,0);
|
|
Quaternion<double> c(0.1,0.5,-0.1,0);
|
|
BOOST_CHECK_EQUAL(a - b, c);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(difference_between_quaternion_and_complex) {
|
|
Quaternion<double> a(0.9,0.5,0.1,0);
|
|
std::complex<double> b (1,1);
|
|
Quaternion<double> c(-0.1,-0.5,0.1,0);
|
|
BOOST_CHECK_EQUAL(a - b, c);
|
|
}
|
|
|
|
/** BINARY OPERATOR: MULTIPLICATION **/
|
|
|
|
BOOST_AUTO_TEST_CASE(multiplication_between_quaternions) {
|
|
Quaternion<double> a(-1,1,-1,1);
|
|
Quaternion<double> b(0.1,0.5,0.9,1);
|
|
Quaternion<double> c(-0.7,-2.3,-1.5,0.5);
|
|
BOOST_CHECK_EQUAL(a * b, c);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(multiplication_between_scalar_and_quaternion) {
|
|
double a = 2;
|
|
Quaternion<double> b(0.1,0.5,0.9,1);
|
|
Quaternion<double> c(0.2,1,1.8,2);
|
|
BOOST_CHECK_EQUAL(a * b, c);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(multiplication_between_quaternion_and_scalar) {
|
|
Quaternion<double> a(0.1,0.5,0.9,1);
|
|
double b = 2;
|
|
Quaternion<double> c(0.2,1,1.8,2);
|
|
BOOST_CHECK_EQUAL(a * b, c);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(multiplication_between_complex_and_quaternion) {
|
|
std::complex<double> a (1,1);
|
|
Quaternion<double> b(0.1,0.5,0.9,1);
|
|
Quaternion<double> c(-0.4,0.6,-0.1,1.9);
|
|
BOOST_CHECK_EQUAL(a * b, c);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(multiplication_between_quaternion_and_complex) {
|
|
Quaternion<double> a(0.1,0.5,0.9,1);
|
|
std::complex<double> b (1,1);
|
|
Quaternion<double> c(-0.4,0.6,1.9,0.1);
|
|
BOOST_CHECK_EQUAL(a * b, c);
|
|
}
|
|
|
|
/** BINARY OPERATOR: DIVISION **/
|
|
|
|
BOOST_AUTO_TEST_CASE(division_between_quaternions) {
|
|
Quaternion<double> a(-1,1,-1,1);
|
|
Quaternion<double> b(0.1,0.5,0.9,1);
|
|
Quaternion<double> c(0.241546,1.207729,0.628019,-0.144928);
|
|
BOOST_CHECK_EQUAL(a / b, c);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(division_between_scalar_and_quaternion) {
|
|
double a = 2;
|
|
Quaternion<double> b(0.1,0.5,0.9,1);
|
|
Quaternion<double> c(0.0966184,-0.483092,-0.869565,-0.966184);
|
|
BOOST_CHECK_EQUAL(a / b, c);
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(division_between_quaternion_and_scalar) {
|
|
Quaternion<double> a(-1,1,-1,1);
|
|
double b = 2;
|
|
Quaternion<double> c(-0.5,0.5,-0.5,0.5);
|
|
BOOST_CHECK_EQUAL(a / b, c);
|
|
}
|